Institute of Robotic Systems

Innovative Locomotion Concept for Long-Range Mission and study of Martian Wind

Swiss Federal Institute of Technology Lausanne 1015 Lausanne, Switzerland

Windball Locomotion Concept

- Objectives
- Martian Environment
 - Wind
 - Temperature
- Application Scenario
- Robotic System
 - Motion and Wind interaction
 - Thermal actuation
 - Shape Memory Alloys, SMA actuation
- Conclusion

Thomas Estier	(thomas.estier@epfl.ch)
Prof. Roland Siegwart	(roland.siegwart@epfl.ch)

• Increase autonomy of mobile robotic system

- limited by on board energy storage and production
- limited by on board calculation power
- Reduce need in energy storage
 - Batteries are massive
 - Batteries are sensitive to thermal conditions
- Reduce need in control for Navigation
 - limit tele-operation from Earth
 - limit calculation power for path planning and obstacle avoidance
- Take the best from the environment
 - Specific system design for specific environment
 - Identify most direct mean to use local resources

Planet

- Mass : 6.42 x 10²³ (kg)
- Diameter : 6787 (km)
- Mars' distance from the sun varies by 20 %
- Atmosphere
 - Low density atmosphere ~7 millibars
 - 95% carbon dioxide,
 - 3% nitrogen,
 - 1.6% argon
 - Omnipresent Wind speed average: 1-9 m/s Storms >20 m/s
 - At aphelion, south atmosphere, storms travel at >100 m/s
 - Pressure wind speed : 10 N/m2 (30m/s)
- Temperature
 - Surface temperature
 - [140; 310] (K)

(PFI

Windball Locomotion Concept

• Daily Martian Temperature cycle

Mars Temperatures: dusty atmosphere

• At Night (structure deployed)

- spherical morphology
 max resistance to wind
 No need of energy
- During the day (structure not deployed)
 - Payload in contact with ground
 - energy generation for payload
 - static measurements
 - Iocalization by orbiter

Wind Exploitation

Windball Locomotion Concept

Guidelines

- Maximal cross section
- Maximal Cx
- Minimal Mass
- Maximal morphological transformation
- → Low fatigue (numerous cycles)
- Maximal Payload Mass and Volume

System design

Drag and open structures

Variant for low speed winds

SoftBall

- Inflatable structure (mass prop. to square of size)
- SoftBall structure is directly used for the landing phase
- Deformation by SMA actuation bringing the poles nearer the center of the sphere
- Payload situated in the center of the sphere
- Same operational cycle

Shape Memory Alloys

Below Mf

	Austenite	Martensite
→ Young's Modulus	~ 83 Gpa	~ 28 to 41 GPa
Yield Strength	195 to 690 Mpa	70 to 140 Mpa
 Resistivity Thermal Conductivity 	~ 100 μΩcm 18 °C W/cm	~ 70 μΩcm 8.5 °C W/cm

- → Melting Temperature : 1300 °C
- → Density : 6.45 g/cm³

- Corrosion Resistance : similar to 300 series stainless steel or titanium alloys
- → Transformation Temperatures range: [-200 ; 110] °C
- → Shape Memory Strain: 8.5% maximum
- NiTi 49/51 at.% Ni
 Temp range transformation [-50 ; 110] °C
 Transformation Hysteresis 30 °C
 Shape Memory Strain for several cycles ~ 4%

Shape Memory Effect

Shape Memory Effect

SMA Actuation

SMA versus bimorph actuation

Windball Locomotion Concept

(I. Okhata) TOTO Ltd.

- Technology demonstration
 - Exploitation of Martian wind and storms for mobility
 - Generation of mechanical energy with Martian temperature cycles
 - Innovative locomotion concept

Scientific interest

- Study wind and/or storms effects at the surface
- Very long range (time) exploration

SMA actuation

- compatible with space environment (orbit or planetary surface)
- allows high reliability system
- allows purely mechanical close loop control
- applicable in every space application with thermal variation