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Chapter 1

Introduction

1.1 Motivation

The acquisition of more ground data from Mars would be desirable for Mars
research in general, but especially for projects like the search for traces of life.
During previous landing missions, lacking mobility of the lander has been lim-
iting the possibilities to gather data from the Martian surface.

NASA’s Pathfinder mission was a step ahead in that sense, with a rover
exploring the surroundings of the landing site. However, while being a success
in its own right, it clearly showed the main problems that limited the rover’s
range: insufficient energy supply and difficulties to communicate with the lander
[NA1]. They are aggravated by the tough Martian environment: Wind and dust
make the use of solar cells difficult [Lan98], high temperature differences decrease
the efficiency of chemical batteries and rocks lying around complicate the task
to navigate.

A new approach might prove worthy: Instead of trying to adapt an existing
robot design to the Martian conditions, one could try to develop a new robot
concept that integrates the characteristics of the target environment from the
beginning; that, instead of suffering from these unfavourable conditions, exploits
them wherever possible.

1.2 Goals

The goal of my semester project was to examine the feasibility of a robot as
sketched above. The design that has been proposed, covered in detail in chapter
3, describes a robot of spherical form that is driven by the wind. Therefore,
we mainly focused on the aerodynamics of the robot. In particular, we tried to
answer two questions: Is the wind strong enough to move the robot around in a
rocky Martian landscape; and which design parameters yield the best mobility
performance?
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1.3 Methodology

In order to study the robot’s aerodynamics, two methods were combined: Theo-
retical modelling and experiments. This required the knowledge of the Martian
environment as well as certain basics in fluid dynamics. As the experiments
were made at a reduced scale in an environment different from the Martian one,
similarity laws had to be respected, too. Finally, the robot’s design may include
the use of shape memory alloys, so that all these theoretical topics will have to
be covered in chapter 2.

What follows is the presentation of the robot concept and the description of
the model to evaluate the robot’s mobility (chapter 3). This model being very
simplistic, its results are compared to the evidence of an experiment (chapter
4).

Based on all the evidence gathered, we will finally assess the general feasi-
bility of the project and indicate the next steps to take (chapter 5).
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Chapter 2

Theoretical background

2.1 Martian environment

2.1.1 General properties

“Mars is red and small and cold” says a NASA website [NA2]. Quantitatively,
Table 2.1 gives a synopsis of some properties of our closest neighbour. More
data can be found in [Mor96], [NA3] and [Col96].

mean distance from sun 227,940,000 km
orbital eccentricity 0.0934
tilt of axis 25.19◦

duration of a day 24.6 h
duration of a year 687 earth days
diameter 6787 km
mass 6.42 · 1023kg
gravity constant 3.73 m

s2

mean temperature -53 ◦C
typical diurnal temperature variation 30...100 ◦C
surface atmospheric pressure 6...10 hPa
average wind speed ≈ 7m

s

main atmosphere component CO2

Table 2.1: General properties of Mars

Mars is about 50% farther from the sun than earth, and the orbit is a lot
more eccentric. This, taken together with the axis tilt, results in asymmetric
seasons: The southern summer is a lot hotter than the northern one, provoking
the famous sand storms (see section 2.1.3). As can be seen, Mars has a similar
day-and-night rhythm to earth. Its smaller size and mass result in a gravity
constant which is about 1

3 of that of earth. It is generally cold on Mars, and the
temperature variations between day and night are very high due to the lack of
water and the thin atmosphere: The surface pressure is about 150 times lower
than on earth.
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2.1.2 Temperature variations

Figure 2.1 shows daily temperature variations on Mars, for different latitudes
and weather conditions. Around the equator, we can observe daily surface
temperature variations between 100◦C (clear atmosphere) and 60◦C (dusty at-
mosphere).

Figure 2.2 displays the evolution of this daily cycle through the year; in a belt
from roughly 30◦N to 30◦S the minima are always below -70◦C and the maxima
above -20◦C. The poles, especially during winter, have weaker variations.

2.1.3 Winds

While the average wind speed was given as 7m/s, stronger winds are quite
common: Great sand storms that may cover a whole hemisphere often occur
during southern summer. Local dust storms, covering some 1 000 000 km2, are
even more common, producing near-ground wind speeds of 50m/s and more
[NA2], [Col96].

2.1.4 Surface properties

Mars is famous for its canals, and craters are common, too. However, there
are regions that are relatively flat [NA4]. So, the choice of an appropriate
landing site is essential for the success or failure of a Martian space mission.
Consequently, an in-depth study of the Martian geography will be necessary
later on.

2.2 Aerodynamics

For a thorough treatment of this subject, see [Ryh91].

2.2.1 Laminar and turbulent flow

In fluid dynamics, one generally distinguishes between laminar and turbulent
flow. The latter is characterised by an erratic behaviour of the speed vector as
a function of time at any given point. It is impossible to predict the path that
a particle will follow from its starting point.

Laminar flow, however, is completely regular and deterministic, with neatly
separated streamlines that indicate the particles’ trajectories.

As one may expect, there is not just the one or the other, but a whole range
of flow patterns that may be called more or less laminar or turbulent. In order
to classify them, the so-called Reynolds number, noted Re, is introduced.

2.2.2 The Reynolds number

The Reynolds number may be considered a measure of turbulence: The higher
it is, the more turbulent is the flow. In order to calculate the Re of any given
system, one has to chose a reference length d – typically the size of an object in
a flow – and a reference speed u, normally the relative velocity of the flow with
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Figure 2.1: Temperature evolution during a Martian day as a function of lati-
tude; black fields mean no data available [MST]

Figure 2.2: Temperature evolution for different seasons [MST]
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respect to the object. Then Re is calculated as

Re =
u · d
ν

(2.1)

with ν the kinematic viscosity. It is related to the dynamic viscosity η by

ν =
η

ρ
(2.2)

with ρ being the density.
Thus, with Re’s definition varying from system to system, one cannot give

a general, precise rule of a laminar or a turbulent range of Reynolds numbers.
All we can say is the following:

If two systems are geometrically similar and have the same Re, then their
flow patterns will be the same, too.

Consider, as an example, the case of a sphere in a linear, steady flow. From
(2.1) we see that, the faster the flow, the higher Re and thus the more turbulent
the flow. That may not be surprising. However, one might expect the flow to
remain the same if the flow’s speed and the sphere’s size are rescaled by the
same factor. Alas, this is not the case, because Re changes, and so does the
flow’s character.

The implications on scaling will be treated in detail in section 2.3.

2.2.3 Drag force of a sphere

Any object placed in a flow is acted upon by a certain drag force. For simple
forms it is usually expressed as

Fd = cd · A · 1
2
ρv2 (2.3)

with cd being the drag coefficient, A the area of the object’s projection on a
plane perpendicular to the flow, and ρ and v the density and speed of the flow,
respectively. The coefficient cd depends on the object’s form and strongly on the
Reynolds number. Figure 2.3 shows this dependence for some chosen geometries.
Examining the graph marked “Kugel” (=sphere), we can distinguish several
different regions corresponding to different flow phenomena:

For Re < 1, the flow is laminar and may be calculated analytically. cd is
proportional to Re−1, so that the drag force is proportional to the flow speed.

For higher Re, the flow becomes more and more turbulent, and cd has to
be measured experimentally. For 1 > Re > 105, cd stabilises at ≈ 0.3 and Fd

begins to rise with the square of the speed.
Then, between 105 and 106, the flow pattern changes abruptly. In a narrow

range of Re, the drag force actually decreases with rising speeds.
Summarising: If, for a given system, the dependence of cd on Re is known,

then (2.3) is a simple and useful formula. However, its applicability is restricted
in the sense that it assumes a steady, homogenous flow.

2.2.4 Boundary layers

In the last section, we were considering a homogenous flow. In reality, this is a
thing rarely to be found.
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Figure 2.3: cd as a function of Re for various geometries; the graph marked
“Kugel” corresponds to a sphere [Ryh91]

Consider a flow that is delimited in one direction by a plane parallel to the
flow. At zero distance from the surface, the flow velocity vanishes due to the
viscosity of the fluid. Far from the surface, let the flow be almost homogenous
and laminar. The domain that links those two regions is called the boundary
layer. It is characterised by a non-negligible velocity gradient. Figure 2.4 gives
an example of a velocity profile that may be found in a boundary layer.

However, the exact velocity distribution in a boundary layer depends on
various parameters, as for example the Reynolds number that takes into account
the asperity of the surface.

2.3 Similarity laws

For a general treatment, see [Her95].
Whenever a system is studied by way of scaled breadboard experiments, the

model is supposed to reproduce the original as exactly as possible. How and to
what extent this is possible is described by the similarity laws.
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Figure 2.4: Typical velocity profile in a boundary layer; Ue is the velocity of the
undisturbed flow, δ the thickness of the boundary layer [Ryh91]

2.3.1 Kinematic similarity

If we would like to reproduce movements, we have to consider the two kinematic
equations

v =
dx

dt
(2.4)

and

a =
d2x

dt2
(2.5)

If we introduce non-dimensional variables as follows

x∗ :=
x

x0
, t∗ :=

t

t0
, v∗ :=

v

v0
, a∗ :=

a

a0
(2.6)

then (2.4) and (2.5) become

v∗ =
x0

v0t0

dx∗

dt∗
(2.7)

and

a∗ =
x0

a0t20

d2x∗

dt∗2
(2.8)

For a model to truly reproduce the movements of the original, each of the
two factors

x0

v0t0
(2.9)

and
x0

a0t20
(2.10)
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must be the same in both cases. This makes the equations describing the move-
ment be the same.

The following definitions are commonly introduced:

Π1 =
x0

v0t0
(2.11)

and

Π2 =
x0

a0t20
· Π2

1 =
v2
0

x0a0
(2.12)

A priori, one is free to choose the scales for the four variables, as long as Π1

and Π2 remain the same. Yet, for systems that are influenced by gravity, the
acceleration scale is fixed by the gravity constant g. If a0 in Π2 is replaced by
g, then Π2 becomes the so-called Froude number

Fr =
v2
0

gx0
(2.13)

For Π1 and Fr to remain constant, one is left with one single degree of freedom
to chose the scale of the model. If we denote xm and xr the model’s and reality’s
reference size, respectively, and likewise for the other variables, we get:

Frm = Frr (2.14)

v2
m

gmxm
=

v2
r

grxr
(2.15)

vm

vr
=

√
gm

gr

xm

xr
(2.16)

The time scale will be fixed by the condition that

Π1m = Π1r (2.17)

and we obtain
tm
tr

=
√

xm

xr

gr

gm
(2.18)

2.3.2 Dynamic similarity

If we want dynamic similarity, we have to consider the forces that are acting.
In particular, the ratios of the different forces must remain the same.

The special case that will be treated here is the behaviour of a sphere sub-
mitted to wind force and gravitation. The ratio between these two forces is,
using (2.3)

Fw

Fg
=

cd · A · 1
2ρv2

mg
(2.19)

Using the same subscripts as in section 2.3.1, similarity is expressed by

cd · Am · 1
2ρmv2

m

mmgm
=

cd · Ar · 1
2ρrv

2
r

mrgr
(2.20)
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The drag coefficient cd is the same if the geometry and Re do not change
(see section 2.3.3 for details). Using

A = x2 (2.21)

we find
mm

mr
=

x2
m

x2
r

v2
m

v2
r

ρm

ρr

gr

gm
(2.22)

By substituting v by the expression given by (2.16), we get

mm

mr
=

x3
m

x3
r

ρm

ρr
(2.23)

Summarising: By fixing the size of the model, and given the gravity constants
and fluid densities for original and model, we automatically obtain the speed,
time and mass scale for the model by equations (2.16), (2.18) and (2.23). So,
we have only one degree of freedom to chose our scale.

2.3.3 Reynolds similarity

As explained in section 2.2.2, two flow patterns are similar if their Re are the
same. Recalling definition (2.1):

Re =
u · d
ν

(2.24)

and demanding
Rem = Rer (2.25)

we get
um · dm

νm
=

ur · dr

νr
(2.26)

Replacing for the speeds’ ratio um/ur the expression found in (2.16), we get

dm

dr
=

(
gr

gm

)1/3 (
νm

νr

)2/3

(2.27)

which means that, if we cannot freely choose νm, we do not have any choice
in picking the size scale!

So, we must verify if a differing Re implies strongly differing flow and forces,
that is, if modelling with a different Re can still be meaningful. Experience
shows that, as Re reaches high values, drag forces tend to vary less then for low
values (see figure 2.3).

Moreover, a theory presented in [Her95] states that, as the flow gets very
turbulent, its similarity is better expressed by conditions (2.16), (2.18) and
(2.23) than by matching Reynolds numbers.

All this does not mean we can simply neglect the Reynolds factor. In section
2.2.3, we mentioned the drastic change of cd at Re values between 105 and 106.
The moral is: working with Reynolds numbers different from those of the original
requires careful study of the aerodynamic behaviour.
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2.4 Shape memory alloys

Wayman [Way90] is a good introduction to the subject; see [Fun84] for an in-
depth treatment, including applications.

2.4.1 Definition and characteristics

The characteristic property of shape memory alloys, abbreviated SMA, is their
ability to “remember” their original form. Even after severe deformations, they
will return to this original shape when they are heated.

The physical reason for this behaviour is a solid state transformation that
SMAs undergo when they are cooled under a critical temperature1. The state
above this temperature is called austensite, the state below it martensite. While
the austensite is similar to any other alloy, the martensite shows special char-
acteristics. Even though most physical properties of the solid change upon
the state transformation, we are chiefly interested in the drastic drop in yield
strength from austensite to martensite.

See figure 2.5 for an illustration. At (A), the solid is in its austensitic, i.e.

Figure 2.5: Elastic behaviour of a SMA as function of T ; caution: T decreases
from (A) to (C); see text for discussion [Way90]

high-temperature state. When it is slightly deformed (B), after release of the
stress it will return to its original state (A). This is the classic elastic behaviour
of any metal.

However, when the SMA is cooled to (C), it will be transformed into its
martensitic state. Again, we exert a stress on the solid; this time, it will be

1As the transformation shows a hysteresis, there is really a temperature range with four
critical temperatures
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easier to deform. This is indicated by the curve from (C) to (D), which is less
steep than from (A) to (B). Moreover, after releasing at (D), the solid does not
return to (C), but will remain deformed (E). Only upon heating will happen
what gave the SMAs their name: It will regain its original form (A).

The temperature range in which the transformation takes place typically
extends over some 20-40◦C. The absolute temperatures depend strongly on the
elements used. For NiTi, a widely used SMA, the critical temperature Af (see
figure 2.5) is about +100◦C for the equiatomic alloy, but can be lowered down
to -200◦C by addition of excess Ni.

2.4.2 Application

The fact that temperature changes may induce shape changes in SMAs soon
made people think about temperature-activated components. Unfortunately,
SMAs work only in one way2: In figure 2.5 we can go from (E) to (A) by heating,
but not back to (E) simply by cooling. In order to return to the deformed state
(E), some external force is needed.

Figure 2.6 shows a possible way to build a two-component system that solves
this problem: A shape memory coil is combined with a generic coil spring,

Figure 2.6: Two-way shape memory component [Fun84]

considered unsusceptable to temperature changes.
Figure 2.7 illustrates the behaviour of the system: on the x-axis the position

of the centrepiece is marked, and on the y-axis the pulling force of each coil.
Thus, if no other external forces are present, the equilibrium position is defined
by the intersection of the two coils’ graphs. Two extreme cases are shown:
for high temperatures, the SMA coil is in its austensitic state and contracted;
the equilibrium position is left of the centre (A). For low temperatures, the
martensitic SMA is easier to deform, shifting the equilibrium towards the coil
spring (B).

Unfortunately, things look less favourable if we introduce a force that is
opposed to the movement of the system. Now the equilibrium is reached when
the difference between the coils’ forces equals that external force. Figure 2.7
shows clearly the subsequent reduction of the effective displacement from (A)–
(B) to (A’)–(B’) under the effect of a 0.5N force.

2By sophisticated methods, it is possible to make SMAs change shape in both ways, but
this technology still poses various problems.
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Figure 2.7: Force equilibria in the two-way shape memory component: the
graph marked “bias” corresponds to the spring coil, the graphs
“90◦C” and “room temperature” are the SMA in its austensitic and
its martensitic state, respectively [Fun84]
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2.4.3 Comparison to bimetallic components

Bimetallic strips are a well-known and easy-to-handle alternative to SMAs as
temperature-activated components. However, to give an example for their per-
formance: The strains reached for temperature differences of 80◦C with bimetal-
lic strips are lower by a factor of ≈ 5...10 with respect to SMAs (see figure 2.8).

Figure 2.8: Bimetall vs. SMA [Fun84]
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Chapter 3

Robot design

3.1 The Windball concept

As stated in the introduction, we wanted to conceive a robot that exploits the
environmental conditions found on Mars. We came up with the following idea:

The robot has a form with axial symmetry (e.g. a cylinder or a sphere), which
allows it to roll as a whole; the driving force is the Martian wind, which gave it
the name “Windball”. It needs to be able to stop in order to produce energy, be
localised by an orbiter and take measures. This is achieved by some change in
shape which inhibits rolling. The deformation may be accomplished by the use
of shape memory alloys: In the equatorial belt of Mars the daily temperature
variations are always greater than 50◦ (see section 2.1.2), so that a judiciously
chosen SMA (for example Ni-doped NiTi, see section 2.4) will perform a whole
transformation cycle per day.

In this way, the two problems presented in section 1.1, that is energy supply
and communication, would be solved in an elegant way: the energy needs are
covered by exploiting inexhaustible resources of the Martian environment, and
the need to communicate is drastically reduced without the need to navigate
actively.

On the other hand, of course, this means that we have no active control of
where the robot will go. But, with almost the whole surface of Mars left to
discover, that need not be a great disadvantage.

3.2 Application scenario

The Windball would essentially work in two different modes: A displacement
mode, with maximised wind resistance, during which there is neither control
nor communication; and a resting mode, during which the robot measures some
physical property, be it geological, meteorological or other, of the place where
it is situated. In resting mode, it would, too, take contact with an orbiter, thus
allowing to know its position on the planet, and generate the energy to feed the
analysis and communication devices.

If shape memory alloys are used for the shape change, they would fulfil one
deformation cycle per day, in accordance with the temperature change. So, the
Windball could be in displacement mode at night and in resting mode at day.

17



If we would like to use solar cells to produce energy, it is, of course, preferable
to move at night and rest during the day, and not vice versa (see figure 3.1).

Figure 3.1: Application scenario for the Windball

3.3 Two variants

Two different versions of the Windball were considered:
According to the original idea it has a spherical, open, metallic structure

(see figure 3.2 for one possible realisation) with a payload at its centre. The
diameter would be in the range of one meter. The shape change, achieved by
SMA actuators, transforms it into some flat, disk-like form, bringing the payload
to the ground.

In the second version, (see figure 3.3) which is due to an idea of Prof. P.
Monkewitz, the Windball is an inflatable balloon and of much bigger size; some
5 to 20 meters are planned. The deformation might be accomplished or by SMA
actuators or by partially deflating the balloon.

To distinguish the two variants, the first one will be called “Hardball” and
the second one “Softball”.

The motivations for the Softball are the problems of the Hardball: An open
structure is likely to get stuck with some obstacle that has a size similar to the
robot’s open spaces. Moreover, the Hardball might be too heavy to be moved
by the wind.

On the other hand, the Softball’s enormous size is a drawback when it has
to be carried to Mars, and the application of solar cells could be more difficult.

18



Figure 3.2: First Windball version: the Hardball; displacement mode (left) and
resting mode (right)

Figure 3.3: Second Windball version: the Softball; displacement mode (left) and
resting mode (right)
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3.4 Weight

3.4.1 Hardball

For the Hardball, dead reckoning let us assume a weight of the structure of 1kg
for a diameter of 1m, plus 100g for the payload. But, what is more important:
The mass will rise with at least the cube of the diameter, because the structure
is three-dimensional.

3.4.2 Softball

The Softball’s mass, however, grows as the square of the diameter. The following
consideration will prove this.

The tension in a balloon’s skin is [Hal01]

σ =
p · R

d
(3.1)

with σ the tension, R the radius of the balloon, p the pressure inside and d the
skin’s thickness. Thus, for a given material with a certain tensile strength σt,
the minimum thickness is

d ≥ p · R
σt

(3.2)

Let us consider the balloon fully inflated when it rests on a circle whose radius
is a fraction α of the balloon’s radius. The inside pressure integrated over this
area must sustain the balloons weight:

p · π(αR)2 = m · g (3.3)

The mass m (neglecting the payload) is

m = 4πR2d · ρ (3.4)

with ρ the skin material’s density. Inserting (3.4) into (3.3) and solving for p
yields

p =
4πR2d · ρ · g

(αR)2π
= 4α−2dρg (3.5)

Replacing this for p in (3.2), we finally get

d ≥ d · 4Rρg

α2σt
(3.6)

and d cancels out! We get a general condition that limits the size in terms of
the skin material’s tensile strength and the degree of inflation α:

R ≤ α2 · σt

4ρg
(3.7)

But: d does not depend on R. The minimum d will be given by fabrication
limits or other parameters, but it does not grow with the general scale of the
Softball. So, its mass (neglecting the gas inside) will be proportional to its
surface, i.e. to R2.

We guessed d = 0.1mm to be a sufficient skin thickness for a material like
Kevlar. With R = 5m, that would make a mass of m = 45kg.
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3.5 Mobility performance

In order to evaluate the mobility of the Windball on Mars, we developed a two-
layer model: At first, using purely physical considerations, we calculated the
maximum height of a step that the robot would be able to climb. Then, we
used statistical data of the rock size distribution on Mars to estimate the mean
free path the Windball could make before hitting a boulder too big to climb
over. All this was calculated as a function of wind speed, the robot’s size and
its mass. So, we can compare the two Windball variants and take a guess for
each one’s optimal size.

3.5.1 Maximum step height

The scenario is the following: We imagine the Windball to have come to a rest
in front of a boulder, symbolised by a perfect step (see figure 3.4). In order to

α
R

F

mg P

h

Figure 3.4: Windball blocked by a boulder

climb the step, the ball must turn about the point P. So, we must consider the
net torque with respect to P. The two forces acting are gravity (marked mg)
and the wind force F . Taking into account their lever arms, we must have

F · cosα > mg · sin α (3.8)

⇒ F

mg
> tanα (3.9)

Expressing α in terms of the step height h and the sphere’s radius R

cosα =
R − h

R
(3.10)

we get
R − h

R
> cos

(
arctan

F

mg

)
(3.11)

and solving for h

h < R · (1 − cos
(

arctan
F

mg

)
(3.12)
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To find the forward force F , we consider the flow to be approximately uniform.
That allows us to use (2.3) to find the force acting on the Windball. A cd of 0.3
was used for the Softball, which is the value for a sphere at high Re.

For the Hardball, however, we assumed cd = 1.1, the value for a disk perpen-
dicular to the flow, to take into account the open design structure. That may
appear little reasonable, or even as wishful thinking, but, as a matter of fact,
the cd of an irregular structure composed of intersecting plates or disks (even
with openings) may be higher than that of a smooth sphere. That may seem
counterintuitive, but intuition is a bad method to approach aerodynamics; an
example for this is the fact that the cd of a disk rises when a small hole is cut
into it (see Hoerner [Hoe51] for a complete treatment of the drag force). Still,
using a cd of 1.1 for the Hardball may be considered optimistic and has to be
verified by experiments.

Tables 3.1 and 3.2 show the maximum step heights for the Hardball and the
Softball, respectively. Figures 3.5 and 3.6 show graphs of the same data.
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mass radius wind speed/ m
s

/kg /m 3 6 9 12 15 18 22 26 30

0.127 0.15 1.36E-05 2.17E-04 1.09E-03 3.37E-03 7.85E-03 1.50E-02 2.85E-02 4.46E-02 6.06E-02
0.164 0.2 3.44E-05 5.49E-04 2.73E-03 8.27E-03 1.86E-02 3.37E-02 5.84E-02 8.34E-02 1.05E-01
0.316 0.3 7.04E-05 1.12E-03 5.55E-03 1.65E-02 3.62E-02 6.34E-02 1.05E-01 1.43E-01 1.74E-01
1.10 0.5 7.47E-05 1.19E-03 5.95E-03 1.81E-02 4.10E-02 7.55E-02 1.34E-01 1.95E-01 2.50E-01
4.20 0.8 5.38E-05 8.60E-04 4.33E-03 1.34E-02 3.17E-02 6.18E-02 1.21E-01 1.97E-01 2.78E-01
8.10 1 4.41E-05 7.05E-04 3.55E-03 1.11E-02 2.65E-02 5.27E-02 1.07E-01 1.83E-01 2.71E-01
13.9 1.2 3.71E-05 5.94E-04 3.00E-03 9.40E-03 2.26E-02 4.54E-02 9.48E-02 1.67E-01 2.57E-01
27.1 1.5 2.99E-05 4.78E-04 2.42E-03 7.60E-03 1.84E-02 3.73E-02 7.97E-02 1.45E-01 2.32E-01
64.1 2 2.25E-05 3.60E-04 1.82E-03 5.74E-03 1.39E-02 2.86E-02 6.22E-02 1.16E-01 1.93E-01

Table 3.1: Hardball max step height
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Figure 3.5: Hardball maximum step height
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mass radius wind speed/ m
s

/kg /m 3 6 9 12 15 18 22 26 30

1.91 1 5.90E-05 9.43E-04 4.74E-03 1.48E-02 3.50E-02 6.87E-02 1.37E-01 2.25E-01 3.23E-01
7.34 2 1.28E-04 2.04E-03 1.03E-02 3.19E-02 7.54E-02 1.48E-01 2.91E-01 4.76E-01 6.75E-01
16.39 3 1.95E-04 3.11E-03 1.56E-02 4.86E-02 1.15E-01 2.24E-01 4.42E-01 7.21E-01 1.02E+00
45.35 5 3.27E-04 5.22E-03 2.63E-02 8.17E-02 1.93E-01 3.77E-01 7.41E-01 1.21E+00 1.71E+00
181.1 10 6.56E-04 1.05E-02 5.27E-02 1.64E-01 3.87E-01 7.55E-01 1.49E+00 2.42E+00 3.42E+00
260.7 12 7.88E-04 1.26E-02 6.33E-02 1.97E-01 4.64E-01 9.07E-01 1.78E+00 2.90E+00 4.11E+00
407.4 15 9.85E-04 1.57E-02 7.91E-02 2.46E-01 5.80E-01 1.13E+00 2.23E+00 3.63E+00 5.14E+00
523.2 17 1.12E-03 1.78E-02 8.97E-02 2.79E-01 6.58E-01 1.28E+00 2.53E+00 4.12E+00 5.82E+00
724.1 20 1.31E-03 2.10E-02 1.06E-01 3.28E-01 7.74E-01 1.51E+00 2.97E+00 4.84E+00 6.85E+00

Table 3.2: Softball max step height
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Figure 3.6: Softball maximum step height

3.5.2 Mean free path

In [Wil97], B. Wilcox et alii discuss the implications of Martian rock frequency
distributions on the design of wheeled rovers. In particular, they use data from
the Viking mission landing sites to calculate the mean free path of a rover;
it is defined as the mean distance the rover can go in one direction without
encountering a rock too big to climb over.
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According to [Wil97], the mean free path may be calculated with the formula

x =
1 − W

2

∫ ∞

D0

Dρ(D)dD − 1
2

∫ ∞

D0

D2ρ(D)dD

W

∫ ∞

D0

ρ(D)dD +
∫ ∞

D0

Dρ(D)dD

(3.13)

where ρ(D) is the density of rocks of diameter D, W the robot’s width and D0

the limiting rock diameter, that means the diameter of the greatest rock the
Windball can roll over. This value is greater than the maximum step height,
because rocks tend to be wider than high.

Table 3.3 gives the values of the integrals needed in (3.13) for Viking landing
site 1. Still according to [Wil97], for this site the rocks’ heights were about 3/8
their diameters.

We used the data of Viking site 1 and equation (3.13) for our purpose by the
following algorithm: A Windball radius and some wind speed are fixed. The
maximum step height is calculated by (3.12). This height is multiplied by 8/3
to obtain the corresponding limiting rock diameter.

Table 3.4 shows the results obtained for the Hardball. Figure 3.7 shows a
graph of the same data.
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fract. area

D0 covered by ρ(D0)
∫ ∞

D0
ρ(D)dD

∫ ∞
D0

Dρ(D)dD
∫ ∞

D0
D2ρ(D)dD

rocks > D0

0.9000 0.0033 0.0052 0.0052 0.00467 0.0042
0.8400 0.0033 0.0000 0.0052 0.00467 0.0084
0.7600 0.0033 0.0000 0.0052 0.00467 0.0084
0.7200 0.0033 0.0000 0.0052 0.00467 0.0084
0.6700 0.0033 0.0000 0.0052 0.00467 0.0084
0.6300 0.0033 0.0000 0.0052 0.00467 0.0084
0.5600 0.0033 0.0000 0.0052 0.00467 0.0084
0.5300 0.0033 0.0000 0.0052 0.00467 0.0084
0.5200 0.0084 0.0240 0.0292 0.01716 0.0084
0.5000 0.0084 0.0000 0.0292 0.01716 0.0149
0.4800 0.0084 0.0000 0.0292 0.01716 0.0149
0.4700 0.0084 0.0000 0.0292 0.01716 0.0149
0.4600 0.0108 0.0144 0.0436 0.02380 0.0149
0.4500 0.0108 0.0000 0.0436 0.02380 0.0180
0.4300 0.0129 0.0145 0.0581 0.03002 0.0179
0.4200 0.0148 0.0137 0.0718 0.03578 0.0206
0.4100 0.0148 0.0000 0.0718 0.03578 0.0230
0.4000 0.0167 0.0151 0.0869 0.04183 0.0230
0.3800 0.0183 0.0141 0.1010 0.04719 0.0254
0.3700 0.0183 0.0000 0.1010 0.04719 0.0275
0.3600 0.0213 0.0295 0.1305 0.05780 0.0275
0.3500 0.0225 0.0125 0.1430 0.06216 0.0313
0.3300 0.0225 0.0000 0.1430 0.06216 0.0329
0.3200 0.0225 0.0000 0.1430 0.06216 0.0329
0.3100 0.0225 0.0000 0.1430 0.06216 0.0329
0.3000 0.0235 0.0141 0.1571 0.06641 0.0328
0.2900 0.0254 0.0288 0.1859 0.07475 0.0341
0.2800 0.0263 0.0146 0.2005 0.07884 0.0365
0.2700 0.0288 0.0437 0.2441 0.09063 0.0377
0.2600 0.0305 0.0320 0.2762 0.09896 0.0409
0.2500 0.0327 0.0448 0.3210 0.11016 0.0430
0.2400 0.0333 0.0133 0.3343 0.11334 0.0458
0.2300 0.0339 0.0144 0.3487 0.11666 0.0466
0.2200 0.0351 0.0316 0.3803 0.12361 0.0474
0.2100 0.0382 0.0895 0.4698 0.14240 0.0489
0.2000 0.0408 0.0828 0.5526 0.15896 0.0528
0.1900 0.0413 0.0176 0.5702 0.16231 0.0562
0.1800 0.0439 0.1022 0.6724 0.18070 0.0568
0.1700 0.0479 0.1762 0.8486 0.21066 0.0600
0.1600 0.0515 0.1790 1.0276 0.23931 0.0652
0.1500 0.0541 0.1471 1.1748 0.26137 0.0698
0.1400 0.0550 0.0585 1.2332 0.26956 0.0731
0.1300 0.0556 0.0452 1.2784 0.27544 0.0742
0.1200 0.0577 0.1857 1.4641 0.29772 0.0750
0.1100 0.0596 0.1999 1.6641 0.31971 0.0770
0.1000 0.0611 0.1910 1.8550 0.33881 0.0800
0.0900 0.0627 0.2515 2.1065 0.36144 0.0820
0.0800 0.0643 0.3183 2.4249 0.38691 0.0840
0.0700 0.0657 0.3638 2.7886 0.41237 0.0861
0.0600 0.0678 0.7427 3.5314 0.45694 0.0878
0.0500 0.0689 0.5602 4.0916 0.48495 0.0900
0.0400 0.0698 0.7162 4.8078 0.51360 0.0920
0.0300 0.0700 0.2829 5.0907 0.52208 0.0930

Table 3.3: Rock size distribution on Viking landing site 1
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mass radius wind speed/ m
s

/kg /m 3 6 9 12 15 18 22 26 30

0.127 0.15 — — — — — 0.45 0.72 1.12 1.70
0.164 0.2 — — — — 0.35 0.65 1.25 3.45 6.07
0.316 0.3 — — — 0.24 0.52 1.05 4.02 9.03 19.72
1.10 0.5 — — — 0.13 0.36 1.26 4.65 21.23 100.67
4.20 0.8 — — — 0.06 0.15 0.41 3.21 15.37 76.38
8.10 1 — — — — 0.09 0.25 1.88 12.91 65.77
13.9 1.2 — — — — 0.05 0.16 0.96 5.64 57.74
27.1 1.5 — — — — 0.01 0.06 0.49 2.62 48.78
64.1 2 — — — — 0.00 0.01 0.11 1.22 7.15

Table 3.4: Hardball mean free path
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Figure 3.7: Hardball mean free path

For the Softball, (3.13) does not give any reasonable data; for example, for
long mean free paths, a saturation can be observed. This is a fault of the model:
For limiting rock sizes greater or equal to the biggest rocks that are listed in
the statistic, (3.13) does not give diverging mean free path lengths.

The reason for this is that Wilcox’s model is based on the implicit assumption
that the robot is of roughly the same size as the obstacles. However, with typical
Softball sizes greater than several meters, this condition is no longer satisfied.
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3.5.3 Model limits

Both layers of the model, the maximum step height as well as the mean free
path, include many simplifying assumptions that reduce the reliability of the
results:

Maximum step height

The main simplification is the treatment of the flow as being uniform. As pointed
out in 2.2.4, the flow near the ground will have a vertical speed gradient and is
likely to be turbulent due to the surface’s irregular form. The real force acting
on the Windball may differ from the one calculated; a non-uniform flow may
even create an upward force.

Secondly, the model is purely static. It does not consider fluctuations in the
wind speed, which may be in our favour: depending on its strength and duration,
a gust could make the Windball climb over a rock that would be considered too
high by our model. Plus, we consider the worst case by assuming that the robot
has come to rest right in front of a rock - with some momentum it would be a
lot easier.

Last but not least the masses used for the two Windball variants are no more
than reasonable guesses.

Mean free path

The mean free path model does not really give an idea of how far the robot can
go with the wind blowing in one direction. The model allows neither rolling
around a rock nor bouncing from the top of one boulder to the next. The
distances obtained may be considered greatly underestimated.

The choice of the site - that is, the site of Viking lander 1 - is, obviously,
arbitrary. However, according to Wilcox et alii [Wil97], the average rock density
seems to be rather lower than higher.

Of course, potential problems like getting stuck in the sand or between two
rocks or even falling into a crater or canal were completely neglected.

3.5.4 Model evaluation

Bearing in mind all the restrictions presented in 3.5.3, the results obtained still
offer some interesting clues. While the data may not be enough to decide if the
average wind on Mars is enough or not to move a Windball, it enables us to
compare the two variants and estimate their optimal sizes.

For the Hardball, an optimal radius seems to be around 30-50cm (see figure
3.7). For the Softball, the rule is the-bigger-the-better (see figure 3.6); this is
plausible if we remember that weight and wind force grow with the square of the
robot’s dimension, but the relative obstacles’ size decreases for growing robot
sizes.

Generally, the Softball performs better, but our assumptions on the minimal
skin thickness of the Softball must be verified; if we have to use 0.5mm of Kevlar
instead of 0.1mm, the Hardball outperforms a Softball of 5m radius by far (figure
3.8).
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Figure 3.8: Comparison of the Maximum Step Height of a Hardball (R = 0.5m),
a light Softball(R = 5m, 0.1mm skin) and a heavier Softball (same
radius, but 0.5mm skin)
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Chapter 4

Experiments

4.1 Movitation

All in all, the data obtained from the model described in chapter 3 is not sat-
isfactory. The most obvious consequence would be to refine the models used,
but eliminating the restraints named in 3.5.3 would be or very costly or even
impossible.

So, a different approach is necessary; numerical or breadboard simulation
could be possible ways. However, while numerical methods may appear elegant,
their application to fluid dynamics is, if it is not restricted to simple cases, a
very complex problem. The simulation on a computer of the Windball in a
non-uniform flow with obstacles all about would require much more time than
was scheduled for the whole Windball project.

Thus, we focused on breadboard simulation. At the civil engineering in-
stitute of the EPFL, we found a wind channel installation that was suitable
to conduct down-scaled experiments simulating the Windball rolling around on
Mars.

4.2 Aims

The general goal of the experiments is to answer the ever-same two questions: Is
the wind strong enough to move the robot around in a rocky Martian landscape;
and which design parameters yield the best mobility performance?

Before writing this report, only one experiment session could be conducted.
So, the short-term goal for these first tries was more modest: Get acquainted
with the wind channel installation, see if it is suitable for our purposes and
execute simple sample experiments to compare them to our model of chapter 3.

4.3 Setup

In figure 4.1 we can see the main components of our experimental setup: the
wind channel itself (about 1m high, 2 meters wide and 10m long), the miniature
Windball (diameter 15cm, weight 25.5g, made of foam plastic) marked (A), a
step-like obstacle (B) and a hot-wire anemometer to measure the wind speed
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